RADIOISOTOPE METHOD OF DETERMINING THE
EFFECTIVE VISCOSITY OF DISPERSE SYSTEMS
UNDER VIBRATIONS*

B. A, Lishanskii, B. P. Osmachkin, UDC 532.135:541.182
and N. V. Mikhailov

A radioisotope apparatus and procedure have been developed for recording the motion of a
control ball with a gamma radiator and for determining the effective viscosity of a disperse
system under vibrations.

The treatment of disperse materials in a vibration field can be optimized ouly if the rheological
properties of such systems are taken into account.

The interlayer processes in disperse systems and the physicomechanical properties of such systems
under vibrations were examined by the radioisotope method, both the apparatus and the procedure having
been described in [3-6]. Results of viscosity measurements in a disperse system by means of gamma rays
were reported in [7]. In that case the geometric locations of an indicator ball were measured discretely,

i.e., at instants of its passage through the sensitivity zones of two detectors installed at a definite distance
between them.

The authors studied the motion of an indicator ball and the rheological properties of disperse systems
under vibrations.

As the test material we used an aqueous cement suspension with a dispersivity of the solid phase
equal to 5000 cm?/g and with the water: cement ratio varying from 0.25 to 0.30. The tests were performed
under harmounic vibrations in the horizontal plane at a frequency of 3000 per minute and with an amplitude
A =0.05, 0.22, or 0.30 mm. The radioisotope apparatus (Fig. 1) was suitable for recording the location of
a control ball (diameter d = 5.5 cm, density pg = 4.0 or 7.8 g/cm?) during its motion through the water
—cement mix. A ball contained inside a bead with cesium-137 isotope emitting gamma rays at a 0.66 MeV

*This paper was presented at the Sixth Symposium on the Rheology of Polymers held in Moscow, May 18-
22, 1971.

Fig. 1. Schematic diagram of the radioisotope apparatus: 1)
model N-102 loop oscillograph; 2, 5) pulse shapers; 3, 6)
cathode followers; 4, 7) radiation detectors; B8) lead shield; 9)
control ball; 10) vessel; 11) shaker.
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Fig. 2. Ratio of radiation intensities at the detectors
(i = I,/I;) as a function of the ball immersion depth (h).

Fig. 3. The effective viscosity of an aqueous cement
suspension as a function of the water: cement ratio,
with pp = 7.8 g/cm® and an oscillation frequency of
3000 min-!; 1) amplitude 0.22 mm; 2) 0.3 mm. n, P.

TABLE 1. Density of Aqueous Cement Sus- energy level and a 2.33-107" R/sec™! - m™! powerful ex-
pensionasa Function of the Water : Cement posure dose. Such a ball with isotope was placed inside
Ratio the 20 X 20 X 20 cm vessel 10 (Fig. 1), which was then
- filled with the test material. The model STS-5 radiation
_Water:cement ratio Pgr g/em’ detectors 4 and 7 were spaced 16 ¢cm apart.
0,250 2,18 The gamma radiator in these tests could be assumed
g,%g gig ‘ equivalent to a point source, inasmuch as its active com-
- ’ ponent was much shorter than its distance to the detector.

Electric pulses from each radiation detector were trans-
mitted to the respective cathode followers 3 and 6, then to the pulse shapers 2 and 5 with the model N-102
recording oscillograph 1 at the output. In this way, signals from the two detectors were recorded at defi-
nite intensities along with time-base pulses. A displacement of the point source of gamma rays could be
measured by the ratio of radiation intensities from the two detectors with respect to a certain base level.
With the distance from the point source to the first and to the second detector Ry and R,, respectively, and
with the corresponding radiation intensities recorded by them I and I, we have, according to [8], the ratio
of radiation intensities i = I,/I; expressed as

i= 1/l = (R?/Rg) exp[— u(Ry — RI)J (1

On the basis of the ratio of intensities averaged by the detectors over a sufficiently short time inter-
val, one can, according to formula (1), almost continuously record the geometric location of a point source
during a linear motion. In order to increase the sensitivity of this method of recording, it is necessary to
increase the ratio of intensities at the detectors, and this is achieved by reducing the irradiation level of
the upper detector 4 relative to that at the lower detector 7 by means of a variable-thickness lead shield 8
{wedge with a 2 cm base and a 10 cm height). In this case, during a vertical downward displacement of the
control ball with the source, the intensity of gamma radiation at the upper detector (I;} decreases owing to
its larger distance from the source (R;) and because of the extra attenuation of radiation by the shield mate-
rial. At the same time, the radiation intensity at the lower detector (I;) increases owing to its smaller
distance from the source (R,). Furthermore, a proper design of the shield profile will make it possible to
trim this relation as desired, and also to reduce the recording error due to the variation in the properties
of the medium during vibrations generated by the shaker 11.

In Fig. 2 is shown the ratio of radiation intensities at the detectors, as a function of the ball depth
(diameter 5.5 cm, density 7.7 g/cm?) in selected aqueous cement suspensions.
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TABLE 2. Ball Velocity (pg = 7.8 g/ em?) ' In order to determine the displacement h of a control

in Aqueous Cement Suspensions at Various ball within a definite time period, we have statistically
Vibration Amplitudes (Frequency n = 3000 evaluated a number of pulses shown on an oscillogram with~
per min) in a measurement time of 0.1 sec. This ensured an aver-
[ ; < age error of ionizing-radiation measurements of not more
Water:cement [Vibration amplitude, v. em/sec than 10% ired £ .
ratio mm , an 10%, as required for the given source of gamma rays
T under the given test conditions. The relation between the
8'3?8 ‘ Ag’gg (‘Hgg ball immersion depth h and the ratio of gamma-radiation
0,250 0,30 i 0,202 intensities (i = Iy/I;) recorded by the detectors for the given
8:3;]2 g:%% 8:22? aqueous cement suspensions can be expressed as
050 oz e == 10,55 — 0557 4+ 13.8/i, cm. e

The density of the aqueous cement suspensions was
: measured by the method shown in [3]. A layerwise check
of the density in the mixtures duriang vibrations indicated no stratification of the mass. The parameters of
vessel and mixture vibrations were compared by tracking the vibrations of a ball (density 1 g/cmS) in water.
The tests indicated a near-coincidence, under the given conditions, between the pad vibrations and the ball
vibrations, which more or less agreed with the test results in [9].

The density of the mixture is tabulated (Table 1) as a function of the water : cement ratio.

It was found in the course of the experiment that during steady-state vibrations the control ball moved
at a constant velocity v = dh/dr.

This confirms the results obtained in [10] with a slotted vibroviscometer, indicating that vibrations
cause the structure of aqueous cement suspensions to break down throughout the volume and isotropically.
In Table 2 are shown the values of the mean ball velocity in an aqueous cement suspension at different
water : cement ratios and at different amplitudes of volume vibrations (frequency n = 3000 per minute).

An inspection of Table 2 will show that, as both the water : cement ratio and the vibration amplitude
increase (at a constant frequency), the average ball velocity also increases. Analogous results were ob-
tained also with a ball of a 4.0 g/cm? density.

Since the density of an aqueous cement suspension does not vary during vibrations, at fixed water
: cement ratios, hence the velocity of the mix may in this case be assumed zero. I has been shown in
[5, 10] that disperse systems under vibrations behave like Newtonian fluids and that, therefore, the appli-
cation of this test method to structurized systems is perhaps limited by an ultimate breakdown of the struc-
ture. Thus, the effective viscosity of a suspension 7y can be defined on the basis of the Stokes equation,
in this case (d = 5.5 cm, g = 981 cm/sec?): '

n,=1649 (ps—ps)/v, P (3

with pg denoting the density of the ball material (g/cm3), pg denoting the deunsity of the suspension (g/cm3),
and v denoting the ball velocity (cm/sec).

The effective viscosity of an aqueous cement suspension as a function of the water : cement ratio is
shown in Fig. 3 at vibration amplitudes 0.22 and 0.30 mm of a ball of a 7.8 g/cm? density. An analysis of
test data shows that, as the water : cement ratio increases, the effective viscosity of the suspension de~
creases and at a water: cement ratio —0.3 the system viscosity is hardly affected by the vibration ampli-
tude. These conclusions are supported by data in [10, 11]. '

Thus, the contactless radioisotope method is useful for studying the rheological properties of dis~
perse systems under vibrations.

NOTATION
w/C is the water : cement ratio;
d is the diameter of the control sphere;
Ps is the density of the control sphere;
Ps is the density of suspension;

Ry, Ry are the distances from the point source to the upper and to the lower detector, respectively;
L, I are the radiation intensities recorded by the upper and by the lower detector, respectively;
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i=1/L is the ratio of radiation intensities;

10,

11.

is the linear coefficient of gamma-radiation attenuation;
is the depth of ball immersion;

is the average velocity of control ball;

is the time;

is the effective viscosity of the system;

is the acceleration of gravity.
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